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Abstract

We propose a learning framework to find the repre-
sentation of a robot’s kinematic structure and pose
embedding spaces using graph neural networks
(GNN). Finding a compact and low-dimensional
embedding space for complex phenomena is a key
for understanding its behaviors, which may lead
to a better learning performance, as we observed
in other domains of images or languages. How-
ever, although numerous applications deal with
various types of structural and motion data, the
embedding of the generated data has been rela-
tively less studied by roboticists. To this end, our
work aims to learn embeddings for two types of
robotic data: the robot’s design structure, such
as links, joints, and their relationships, and the
pose data, such as kinematic joint positions. Our
method exploits the tree structure of the robot to
train appropriate embeddings to the given robot
data. To avoid overfitting, we formulate multi-
task learning to find a general representation of
the embedding spaces. We evaluate the proposed
learning method on a robot with a simple linear
structure and visualize the learned embeddings
using t-SNE. We also study a few design choices
of the learning framework, such as network archi-
tectures and message passing schemes.

1. Introduction

Computation robot design has been discussed in terms of
motion planning (Ha et al., 2017) or control learning (Zhao
et al., 2020), but researchers haven’t investigated the nature
of the morphological and motion data thoroughly. Given the
fact that the robot’s structure can be represented as a graph,
it seems to be a natural choice to leverage graph neural net-
works (GNNs) to represent the robot’s data. Particularly, we
employ the framework of message passing neural networks
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(MPNNs) proposed by Gilmer et al. (Gilmer et al., 2017) as
the network architecture. This scheme has been applied to
learn a variety of graph-structured data, from a single large
graph (e.g., social network) to multiple small graphs (e.g.,
molecules). While the former data typically involves the
per-node or per-edge data, the latter focuses on graph-level
tasks. Inspired by the success of molecule works (Wu et al.,
2018), we also formulate the learning with graph-level tasks.

In addition, we take an approach of multi-task learning
(MTL) when we learn embeddings to find a shared represen-
tation that is agnostic to the selection of tasks. In particular,
we set two related tasks in this work: solving forward kine-
matics (FK) and inverse kinematics (IK) while sharing robot
structure representation. Because the robot’s morphologies
and motions are related to each other, we expect that this
simultaneous learning of FK and IK allows us to find gen-
eral embeddings more efficiently. Note that our goal differs
from other existing tasks (Reily et al., 2020), which do not
consider any kinematic constraints.

We evaluate the proposed learning framework on a simple
2D robot with a linear structure. We generate a set of data
while varying the number of joints and link lengths, and
augment the structure data set with pose data. Then we
process the given high dimensional data to find a compact
fixed eight-dimensional embedding space. We visualize the
learned embedding space using t-SNE and compare it with
the embedding of the multilayer perception (MLP) to find
insights into the robot design and motion spaces.

2. Learning Robot Embedding with GNN

Our method encodes robotic data into two separated spaces:
structure embedding and pose embedding. The pose em-
bedding is decoupled from the structure embedding, so that
structure embedding targets particularly for invariant infor-
mation which is specific to the robot structure. Instead, the
pose embedding helps to capture kinematics information,
which involves robots’ physical feasibility, robotic proper-
ties, or skills expected to learn through the embeddings.

2.1. Tree Message Passing

We can model a robot’s structure as a tree by converting
joints to nodes and links to edges while assuming no loops
as shown in Fig. 1a. Then a leaf node represents a null joint
that makes the connected edge an end-effector. We focus
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Figure 1. Tree message passing overview. (a) Robot structure converted to tree-structured data with nodes and edges. Robotic data such as
joint angle s and link length l are assigned to node or edge features. (b) Two paths in message passing: downward passing to spread the
information from parent to child nodes, then upward passing to aggregate the information at the root node. M , A, and U denote the
message generation, message aggregation, and hidden state update function, respectively, for each direction down and up.

on this tree structure of the robots and exploit it to learn
compact but meaningful structural or pose embeddings.

Fig. 1b describes how the messages are generated and passed
throughout the structure. Each message passing step updates
the hidden state hr of receiver node r with message function
M , aggregation function A, and update function U . Let us
assume a set of n sender nodes S 2 [s1, s2, · · · , sn] that
send their message to the receiver node r. Then each node
s 2 S will generate its own message using the function M :

mt
s = Mdir(h

t
s, e(s,r)), (1)

where dir denotes the direction of the message passing, and
es,r denotes the feature of the edge (s, r). Either parent or
child node can be the sender based on the direction of the
message passing. Then, the messages from the senders are
aggregated by the aggregation function Adir as

mt = Adir(m
t
s1 ,m

t
s2 , · · · ,m

t
sn). (2)

Finally, the hidden state of the receiver node r is updated as

ht
r = Udir(h

t�1
r ,mt) (3)

where t denotes the time step of the update.

Within the tree structure, we define message passing in two
directions, from root to leaf or leaf to root, which will be
referred to as downward passing and upward passing, re-
spectively. For the downward passing, each node is updated
only based on its parent node, thus an identity function is
used as an aggregation function A. This passing can also
be viewed as spreading a parent node’s information to child
nodes. Contrarily, upward message passing has to collect
the information from multiple child nodes using an aggre-
gation function. Typical choices of an aggregation function
include mean, pooling, and recurrent neural networks.

2.2. Pretraining of Encoders

Ahead of multi-task learning, we pre-train both structure and
pose encoders to facilitate the whole learning process. This
is because we observe that the proposed multi-task learning

Figure 2. Two tasks solved jointly as multi-task learning: (a) for-
ward kinematics, FK; and (b) inverse kinematics, IK. The tasks
share structure embedding space and pose embedding space while
training. FK predicts the end-effector position from the structure
and pose embeddings, while IK estimates the pose from the struc-
ture embedding and end-effector position.

is difficult to learn from scratch. For this purpose, we pre-
train structural encoders by learning new self-reconstructing
tasks that encode node features and decode to reconstruct
the given inputs. We suggest two reconstruction strategies
using tree message passing: encoding-decoding (ED), which
reconstructs all the nodes at once, and fill-in-the-blank (FB),
reconstructing randomly masked nodes.

2.3. Multi-task Representation Learning on Kinematics

We suggest learning an embedding space of robot through
multi-task representation learning (MTL) as illustrated in
Fig. 2 to learn the space that is generalizable across multiple
tasks. Because our goal is to make the embedding space
of the robot’s kinematics, we select two popular tasks: for-
ward kinematics and inverse kinematics. For the structure
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Figure 3. Embedding space visualizations using t-SNE: (a) Structure embedding (b) Pose embedding. We plot the same embedding with
two different color schemes, where they denote the number of joints in the upper row and the first link length in the bottom row.

embedding, we use link lengths l and binary flags ee to note
whether the node is an end-effector as node features. For
the pose embedding, we use joint positions s as the node
features, which vary in a single robot structure.

The first task, forward kinematics (FK, Fig. 2a), is to find
the end-effector position in Cartesian space from the given
joint angles. First, we obtain a structure embedding of
a robot using a structure-tree encoder while computing a
pose embedding from joint angles using a pose-tree encoder.
Then, both the embeddings are concatenated and fed to a
multilayer perceptron to predict the end-effector position.

On the other hand, the inverse kinematics task (IK, Fig. 2b)
predicts joint angles from the given position of the end-
effector. Note that the IK task naturally has ambiguity with
multiple solutions while the FK task predicts the unique
end-effector position. The structure embedding is obtained
through the aforementioned structure-tree encoder and then
combined with the given end-effector position. Then an
MLP layer maps the combined information to the pose-
tree embedding space to reconstruct the pose-tree structure,
which holds the joint angle configuration.

We learn on a linear combination of multi-tasks losses:

Ltotal = wFKLFK + wIKLIK. (4)

where wFK and wIK are set as 5.0 and 0.5, respectively.

3. Experiments

In this pilot study, we focused on a simple robot with a
linear structure. We built our data set using the Reacher en-
vironment in OpenAI Gym (Brockman et al., 2016), which
is a well-known benchmark in reinforcement learning. A
reacher is a robot arm with one end-effector, so we can rep-
resent the robot’s structure with a tree with one child node
for each parent node. We vary the number of joints and the

length of each link to generate various robot structures while
changing the poses of each robot to learn kinematics. The
structure and pose encoders are trained to encode the given
input into a fixed-dimension vector, which is empirically set
to 8. The size of hidden layers in MLP is also set to 8.

3.1. Embedding Space Visualization

To explore the learned latent space, we plot the embedding
vectors to two-dimensional space using t-SNE (Van der
Maaten & Hinton, 2008) as shown in Fig. 3. The color
in the upper row indicates the number of joints, while the
bottom row figures are colored based on the first node’s
feature value, i.e., link length or joint angle.

Structure embedding. Fig. 3a compares the structure em-
bedding spaces learned with two architectures, our GNN
with fill-in-blank architecture (column (a-1)) and the stan-
dard MLP (column (a-2)). We present both embeddings
with two different colorizations based on the number of
joints (upper) and the link length of the first node (lower).
Both embeddings build clusters based on those two features,
the number of joints and the link length of the first node,
which affect the kinematic performance of the robot signifi-
cantly, i.e., the reachable workspace of the robot. However,
the overall shapes are quite different from each other: the
MLP produces more dispersed clusters while our method
creates two long-curved lines. We suspect that our method
maintains a single cluster for three-linked and four-linked
structures because both offer multiple solutions for a single
IK problem.

We argue that one embedding is not particularly better than
the other. Rather, they just provide different perspectives
for understanding the robot structure data. The MLP em-
bedding space is not what we wanted to obtain because it
does not give us any intuition for relating structures with dif-
ferent numbers of links. On the other hand, the embedding
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Figure 4. Sampled robot poses from pose embedding space. (a)
and (b) are each end of the cluster. The pose embeddings are
mostly determined by the first joint angle.

with our approach associates structures with three and four
links, which can be reasonable in terms of their kinematic
capabilities, such as reachability and singularity against IK.
Pose embedding As shown in Fig. 3b, pose embeddings
are in a single cluster and correlate to the node feature (i.e.,
joint angle), not the number of joints. The embeddings of
MLP (col. b-1) are distributed all over the space without
any recognizable shape, but ours are connected in a lengthy
cluster with sharp ends (col. b-2). Fig. 4 shows the actual
robot poses sampled from each end of the pose embedding
space learned with our method. Left column robots have
three joints, while right column robots have four joints. Sim-
ilar to our observation from the latent space visualization,
the embedding is mostly correlated to the first joint angle
that determines the range of end-effector position.

3.2. Reconstruction Strategies Comparison

In Fig. 5, we further compare two different reconstruction
strategies discussed in Sec. 2.2. ED reconstruction embed-
dings (Fig. 5a) create a long line connected all together
with a bit of noise, but no specific correlation shown with
neither the number of node nor node features. Contrarily,
the embeddings learned by FB reconstruction are in more
stretched shapes but subject to the node features. That is,
FB reconstruction distinguishes each input in detail and be
expected to facilitate further tuning in the embedding space.

4. Conclusion

In this paper, we have proposed a tree-based message pass-
ing neural network for creating an embedding space for
robotic structures and poses. We leverage the tree structure
existing in kinematic structures to encode the given robot
data into the corresponding embedding spaces. We further
incorporate the kinematic movements of the robot through
the multi-task learning to learn more meaningful represen-
tations. We visualized the learned embeddings via t-SNE

Figure 5. Comparison of reconstruction strategies. (a) Encoder-
decoder (ED) (b) Fill-in-the-blank (FB).

dimensional reduction and analyzed how the embedding
space formed for different structures and pose data. In the
future, we hope to add more complexity to the robot struc-
ture, such as more nodes, various types of revolute joints,
and graph structures including closed chain.
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