Learning Robot Structure and Pose Embeddings
using Graph Neural Networks

Georgia Tech.
ICM L J. Taery Kim 1, Jeongeun Park ?, Sungjoon Choi?, Sehoon Ha' _Q_L
OnMochine Learmng ' Georgia Institute of Technology 2 Korea University UK,\R,IE?}{EQ

Visit our page!

5] 75 5

1. Motivation: Can we learn embeddings to represent robotic data?

- Finding a compact and low-dimensional embedding space for complex phenomena is a key for understanding

robots’ behaviors.

- However, although numerous applications deal with various types of structural and motion data, the embedding of
the generated data has been relatively less studied by roboticists.

- To this end, our work aims to learn embeddings for two types of robotic data: robot’s design structure and pose data.

2. Method: Learning Robot Embedding with GNN
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3. Experiments and Results
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4. Conclusion and Future Work

- We leverage the tree structure existing in kinematic
structures to encode the robot data into the
corresponding embedding space.

- We further incorporate the kinematic movements of
the robot through the multi-task learning to learn
more meaningful representations.

We test the tree message passing on a robot with a
simple linear structure and visualize the embeddings.
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